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The Study 

• Empirical study using an SMT solver to 
automatically prove Verification 
Conditions (VCs) 

–4028 VCs studied 

–bit.ly/nfmVC 

• We believe all these VCs are valid (from 
correct code) 
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The Study 

• VCs from about 50 RESOLVE software 
components  

–About 2000 lines of code 

–Arithmetic algorithms 

–Sorting of items with arbitrary orders 

–Client manipulations and data 
representations for stacks, queues, 
lists, sets, etc.  
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The Study 

• Specifications based on standard design-
by-contract principles and annotations, 
but very few other assertions 

• Strict separation between code and the 
mathematics used to write contracts 

• Approach does not assume that 
programmers have any knowledge about 
intricacies of a theorem-prover 
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Contributions 

• First automated proof of a sorting 
algorithm where client supplies both: 

–Type to be sorted, and 

–Ordering (any total pre-order) 
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Contributions 

• Highlight the importance of universal 
algebraic lemmas to an automated 
prover, in lieu of expanded definitions of 
user-defined mathematical symbols 

–Not only as a way of providing 
information but also to hide 
unnecessary complexity 
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User-Defined Symbols 

• Necessary for any specification language 

• Math functions or predicates in RESOLVE 
can be defined 

–Explicitly 

–Implicitly 

• Restrictions on template parameters 
raise similar issues 
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A Simple Example 

• Definition body: 
 
definition IS_ODD ( 
    n: integer 
): boolean 
is 
    there exists k: integer 
        (n = 2 * k + 1) 
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A Simple Example 

• Sample use in a contract: 
 
procedure Halve ( 
    updates i: Integer 
) 
    requires 
        not IS_ODD(i) 
    ensures 
        i * i = #i 
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A Simple Example 

• Some algebraic properties: 
 
for all x : integer 
• IS_ODD(x) ⇒ not IS_ODD(x + 1) 
• not IS_ODD(x) ⇒ IS_ODD(x + 1) 
• not IS_ODD(x+x) 
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The Tool Chain 
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The Tool Chain 
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The Tool Chain 
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Two Categories of VCs 

VCs without 
definitions 

VCs with 
definitions 

79.7% 20.3% 
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98% 

VCs With No User-Defined Symbols 

VCs without 
definitions 

VCs with 
definitions 
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First Attempt 

• Treat user-defined symbols as 
uninterpreted symbols 

• This is the only step of interest for VCs 
without user-defined symbols 
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First Attempt - Sample VC 

Prove: 

ARE_PERM (‹› ◦ q14 ◦ ‹x6› ◦ q24, 
                      q10 ◦ ‹› ◦ ‹›) 

Given: 

‹x6› ◦ ‹› ≠ ‹› 

∧ … 

∧ ‹x6› ◦ ‹› = ‹› 
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First Attempt - Results 

• Can only prove VCs 
whose truth is 
unrelated to the 
user-defined 
symbols 

• Only 48% of VCs 
with user-defined 
symbols are 
proven 

RESOLVE Software Research Group 18 

48% 

68% 

79% 

93% 

3rd Attempt 

2nd Attempt 

4th Attempt 

1st Attempt 

Results for 
VCs with definitions 



Second Attempt 

• Provide to the prover the bodies of 
definitions of user-defined symbols 
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Second Attempt - Example Body 

definition ARE_PERMUTATIONS ( 
    s1: string of Item, 
    s2: string of Item 
): boolean 
is 
    for all i: Item 
        (OCCURS_COUNT(s1, i)= 
         OCCURS_COUNT(s2, i)) 
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Second Attempt - Sample VC 

Prove: 

ARE_PERM( ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›, 
                      ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) 

Given: 

… 
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Second Attempt - Results 

• Great 
improvement as Z3 
can now reason 
about the provided 
symbols 

• Still not enough; 
only 68% of VCs 
are proven 
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Third Attempt 

• Provide both the definition bodies and 
some universal algebraic lemmas 

–Most lemmas are evident from the 
development of the mathematical 
definitions, not their use in contracts 

–Few are not mathematically 
interesting, and instead arose from 
attempting to prove VCs 
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Third Attempt - Sample Lemmas 

for all a,b,c: string of Item 

• ARE_PERM (a, a) 
• ARE_PERM (a, b) and  ARE_PERM (b, c) 
          ⇒ ARE_PERM (a, c) 
• ARE_PERM (a, b) ⇒ ARE_PERM (b, a) 
• ARE_PERM (a ◦ b, b ◦ a) 
• ... 
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Third Attempt - Sample VC 

Prove: 

ARE_PERM ( 
   tmp4 ◦ ‹q2Item4› ◦ q24 ◦ q16 ◦ ‹q1Item6›, 
          ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) 

Given: 

ARE_PERM ( 
   tmp4 ◦ ‹q1Item6› ◦ q16 ◦ q24 ◦ ‹q2Item4›, 
          ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) ∧ ... 
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Third Attempt - Sample VC 

Prove: 

ARE_PERM ( 
   tmp4 ◦ ‹q2Item4› ◦ q24 ◦ q16 ◦ ‹q1Item6›, 
          ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) 

Given: 

ARE_PERM ( 
   tmp4 ◦ ‹q1Item6› ◦ q16 ◦ q24 ◦ ‹q2Item4›, 
          ‹› ◦ q10 ◦ q23 ◦ ‹q2Item3›) ∧ ... 
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Third Attempt - Results 

• The lemmas 
provide useful 
simplification 
rules, and about 
79% of VCs are 
proven 
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Fourth Attempt 

• Keep universal algebraic lemmas from 
the third attempt 

• Remove the bodies of definitions of user-
defined symbols 
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Fourth Attempt - Intuition 

• Removing the definitions diminishes the 
complexity of the quantifier structure of 
a VC 

–Preserves encapsulation of definitions 

–Advantages of user-defined symbols 
are no longer restricted to the human 
readers 
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Fourth Attempt - Sample VC 

Prove: 

IS_NONDEC (‹q2Item4› ◦ q24) 

Given: 

IS_NONDEC (tmp4 ◦ ‹q2Item4› ◦ q24) 

∧ … 
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Fourth Attempt - Results 

• About 93% of VCs 
with user-defined 
symbols are now 
proven 
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98% 

Result of Proof Attempts 

VCs without 
definitions 

VCs with 
definitions 

48% 

68% 

79% 

93% 

Expand Definitions 
 and Provide Lemmas 

Expand Definitions only 

Provide Lemmas only 
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Conclusion 

• First automated proof of a sorting 
algorithm where client supplies both: 

–Type to be sorted, and 

–Ordering (any total pre-order) 

RESOLVE Software Research Group 33 



Conclusion 

• Highly reusable universal algebraic 
lemmas support automated proofs of 
VCs with user-defined symbols 
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Conclusion 

• Supplying universal algebraic lemmas 
about user defined mathematical 
functions and predicates is, in general, a 
better way than expanding definitions to 
support automated proofs of VCs 
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Conclusion 

definition ARE_PERMUTATIONS ( 
    s1: string of Item, 
    s2: string of Item 
): boolean 
is 
    for all i: Item 
        (OCCURS_COUNT(s1, i)= 
         OCCURS_COUNT(s2, i)) 
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Conclusion 

• Benefits of universal algebraic lemmas 

–Better than expanding definitions 

Do not reintroduce the quantifiers 
and other complexities they were 
designed bury 

–Preserve encapsulation of definitions 

Benefits both humans (writers and 
readers of specifications) and provers 
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Future Work 

• Study the potential for dependence of 
these results on specification and 
programming language features 

–Conjecture: basic conclusion applies to 
other programming and specification 
languages, other VC generation 
techniques, etc. 
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Questions? 

Aditi Tagore, Diego Zaccai, Bruce W. Weide 
The  RESOLVE Software Research Group 

Department of Computer Science and Engineering 
The Ohio State University 


